HP 3562A Dynamic Signal Analyzer

The HP 3562A dynamic signal analyzer is well suited for design, test, and analysis of electronics, mechanical systems, and electro-mechanical control systems. Two input channels, 64 µHz-to-100 kHz frequency range, 150 dB measurement range, and 80 dB dynamic range in this FFT-based analyzer, offer versatility and performance for even the most difficult spectrum, and waveform measurements, in both time and frequency domains.

The two high-performance input channels and a built-in signal source (noise and sine signals) address network analysis needs on the bench or in a test system. Vector averaging, waveform math, 40-pole/40-zero curve fitting, and frequency response synthesis enhance network measurements with a full range of analysis and modeling capabilities. Zoom analysis, with frequency resolution to 25.6 µHz, plus a powerful AM, FM, and PM demodulation function, make the HP 3562A a versatile spectrum analyzer. For transient or waveform analysis, signals can be sampled, digitized, and then stored in internal memory, or sent via HP-IB to an external disk drive (without a computer). Stored waveforms can be recalled and analyzed in the time, frequency, and amplitude domains (baseband and zoom analysis).

Frequency Response Measurements

You can make accurate, high-resolution frequency response measurements of electronic and mechanical systems with linear or logarithmic resolution FFT and swept sine analysis. A built-in signal source provides a variety of random noise and sine wave signals to meet the requirements of the system under test.

Linear resolution is the measurement technique common to all dynamic signal analyzers. In the HP 3562A, 2048-point time records are Fourier-transformed into 801-line frequency spectra. For network analysis, frequency response magnitude and phase, as well as input and output power spectra, can be measured with 801 lines of resolution. Accuracy for the frequency response magnitude and phase is ±0.1 dB and ±0.5°.

The swept-sine mode configures the HP 3562A as a powerful swept-sine frequency response analyzer. The source can generate linear or logarithmic sweeps with increasing or decreasing frequency; user-selectable sweep rate and resolution are also standard source functions. Input channel functions include user-selectable averaging and integration time; automatic input ranging can be activated to provide over 140 dB of dynamic range for measurements of high performance systems.

Spectrum Analysis

On-line analysis of distortion, drift, modulation, and phase noise can benefit from the speed and accuracy of the HP 3562A. High-resolution measurements are typically 100 times faster than tuned spectrum analyzers. Because the HP 3562A is an FFT-based analyzer, you can see transient events a tuned analyzer would probably miss.

The HP 3562A is essentially a dual-channel spectrum analyzer that provides resolution to 25.6 µHz anywhere within the 64 µHz-to-100 kHz measurement range. Amplitude accuracy is ±0.15 dB with 80 dB of dynamic range. Modulation analysis can be performed on either or both channels with harmonic and sideband markers as well as with the built-in demodulation capability. Waveform measurements can be AM, FM, or PM demodulated with carrier frequencies up to 99.9 kHz.

Waveform and Transient Analysis

Perform complete analysis of waveforms and transients in the time and frequency domains. Store sampled and digitized waveforms in internal memory (single-channel time capture) or on disk in an external disk drive (single- or dual-channel time throughput). Recall data for time domain analysis as single time records or as a compressed display of up to 10 time records (time capture mode). Data can also be recalled for baseband and zoom analysis in the frequency domain with vector averaging, if needed.

The array of triggering capabilities enhances both waveform recording modes. Pre- and post-trigger delays can be specified to capture the rising edge of a transient or to compensate for delays in the system under test.

Hardcopy and Mass Storage

When access to prototypes is limited, make your test time more efficient with the time throughput capability; through direct control of external disk drives, the HP 3562A stores time data directly to disk without a computer.

HP-IB is a standard feature to speed and simplify documentation of results with direct control of plotters and disk drives. Anything displayed on the analyzer screen can be plotted or saved on disk, including measurement results, setup state tables, synthesis tables, curve fit tables, and auto-sequence or auto-math program listing.

Automation for Improved Productivity

As a standalone solution, the analyzer can "learn" a series of keystrokes and then perform them on command (auto-sequence programming). Up to five auto-sequence programs can be stored internally, with additional programs stored on an external disk drive.

For networked HP-IB systems, the HP 3562A provides complete HP-IB programmability. Custom display graphics messages can be created with direct programming of the display, and user-defined softkey menus can be created to simplify interactive testing.

Specifications (HP 3562A, 3563A)

- Contact your local HP sales office for more information, including a data sheet with complete specifications.

Frequency

Measurement range: 64 µHz to 100 kHz. Both channels, single- or dual-channel operation.

Resolution: Span/800. Both channels, single- or dual-channel operation, linear resolution mode.

Spectral Analysis

- 80 dB dynamic range with full alias protection
- High accuracy (±0.15 dB)

- Contact your local HP sales office for more information, including a data sheet with complete specifications.

- Frequency Measurement range: 64 µHz to 100 kHz. Both channels, single- or dual-channel operation.

- Resolution: Span/800. Both channels, single- or dual-channel operation, linear resolution mode.

- Window functions: Flat top, Hann, uniform, force, exponential, user-defined

- Typical real-time bandwidths:
 - Single-channel, fast averaging 10 kHz
 - Throughput to CD/80 disk
 - Single-channel 12.5 kHz
 - Dual-channel 6.25 kHz

- Amplitude Accuracy: Defined as full-scale accuracy at any of the calculated frequency points. Overall accuracy for the linear or logarithmic resolution modes is the sum of the absolute accuracy, window flatness, and noise level. Overall accuracy for swept-sine mode is the sum of absolute accuracy and noise level.
Absolute accuracy: Single channel (channel 1 or 2)
\[\pm \frac{0.15 \text{ dB}}{100} \pm \frac{0.015\%}{100} \text{ of input range (27 dBV to 40 dBV)} \]
\[\pm \frac{0.25 \text{ dB}}{100} \pm 0.025\% \text{ of input range (-41 dBV to -51 dBV)} \]

Window flatness:
- Flat top: +0.0 - 0.01 dB
- Flat Top: +0.0 - 1.5 dB

Noise floor: With flat top window, 50\Omega source impedance and input set to -51 dBV range
- 20 Hz to 1 kHz (1 kHz span) \(< -126 \text{ dBV} \) (134 dBV/Hz)
- 1 kHz to 100 kHz (100 kHz span) \(< -115 \text{ dBV} \) (144 dBV/Hz)

Frequency response channel match:
- Analog: Analog: Input signals at full scale on any pair of ranges, accuracy is \(\pm 0.1 \text{ dB}, \pm 0.5 \text{ degree} \) (HP 3562A and HP 3563A).
- Digital: Digital: For simultaneous sampling on channels 1 and 2, accuracy is \(\pm 0.1 \text{ dB}, \pm 0.5 \text{ degree} \) (HP 3563A only).
- Mixed analog/digital: With full-scale inputs on both channels, computational delay between channels corrected for; 1:1 sampling ratio, 16 averages, 256 kHz sample clock; nominal accuracy is \(\pm 0.2 \text{ dB}, \pm 1.0 \text{ degrees from 64 Hz to 20 kHz} \) and \(\pm 0.2 \text{ dB}, \pm 4.0 \text{ degrees from 20 kHz to 100 kHz} \) (HP 3563A only).

Dynamic range: All distortion (intermodulation and harmonic), spurious, and alias products are \(\pm 80 \text{ dB} \) below full scale input range (16 averages).

Analog Input (HP 3563A and 3562A):
- **Input impedance:** 1M\(\Omega \) \(\pm 5\% \) shunted by \(< 100 \text{ pF} \)
- **Input coupling:** Inputs can be ac or dc coupled — ac rolloff is \(< 0.25 \text{ dB} \) at 1 Hz
- **Crosstalk:** \(-140 \text{ dB} \) (50\Omega source, 50\Omega input termination, input connectors shielded)
- **Common mode rejection:** 0 Hz to 60 Hz 80 dB
- 66 Hz to 500 Hz 65 dB
- **External sampling input:** TTL compatible input for signals \(\pm 256 \text{ kHz} \) (nominal maximum sampling rate)

Digital Input (HP 3563A):
Measurement data signals can be up to 16 bits wide and must be parallel data in two's complement or offset-binary format. (User selects truncation of unused upper bits or rounding of the three lowest bits for data more than 13 bits wide.) The data qualifier input accepts 8 qualifier lines, a trigger, and 1 clock signal.

Trigger:
- **Trigger modes:** Free run, input channel 1, input channel 2, source and external trigger. Free run applies to all measurement modes. Input channel 1, input channel 2, source and external trigger apply to the linear resolution, time capture, and time throughput measurement modes.
- **Trigger delay:** Pre- and post-trigger delay resolution is 1 sample (1/2048 of a time record).
- **Pre-trigger:** A measurement can be based on data that starts from 1 to 4906 samples (1/2048 to 2 time records) before trigger conditions are met.
- **Post-trigger:** A measurement is initiated from 1 to 65,536 samples (1/2048 to 32 time records) after the trigger conditions are met.

Analog Source (HP 3563A and 3562A):
Random noise, burst random, sine chirp, burst chirp, fixed sine, and swept sine are available from the front panel source of the HP 3562A and HP 3563A. The HP 3563A also provides step, pulse, ramp and arbitrary signals from the same front panel source output. Users can select dc offset.

Output Impedance: 50\(\Omega \) (nominal)